HLMP-331x Series

HLMP-351x Series

T-13/4 (5 mm) High Intensity LED Lamps

Data Sheet

Description

This family of $\mathrm{T}-13 / 4$ nondiffused LED lamps is specially designed for applications requiring higher on-axis intensity than is achievable with a standard lamp. The light generated is focused to a narrow beam to achieve this effect.

Features

- High intensity
- Choice of 3 bright colors
- High Efficiency Red
- Yellow
- High Performance Green
- Popular T-13/4 diameter package
- Selected minimum intensities
- Narrow viewing angle
- General purpose leads
- Reliable and rugged
- Available on tape and reel

Selection Guide

Color	Part Number	Luminous Intensity Iv (mcd) @ 10 mA Min.	Max.

Part Numbering System

Package Dimensions

NOTES:

1. ALL DIMENSIONS ARE IN MILLIMETRES \{INCHES\}.
. AN EPOXY MENISCUS MAY EXTEND ABOUT 1 mm (.040") DOWN THE LEADS.

Electrical Characteristics at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Symbol	Description	Device HLMP-	Min.	Typ.	Max.	Units	Test Conditions
IV	Luminous Intensity	3316	22	60.0		mcd	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ (Figure 3)
		3416	14.7	50.0		mcd	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ (Figure 8)
		3519	10.6	70.0		mcd	$\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}$ (Figure 13)
$2 \theta^{1 / 2}$	Including Angle Between Half Luminous Intensity Points	3316		35		Deg.	$\begin{aligned} & \hline \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \\ & \text { See Note } 1 \text { (Figure 6) } \end{aligned}$
		3416		35		Deg.	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \\ & \text { See Note } 1 \text { (Figure 11) } \end{aligned}$
		3519		24		Deg.	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \\ & \text { See Note } 1 \text { (Figure 16) } \end{aligned}$
$\lambda_{\text {PEAK }}$	Peak Wavelength	$\begin{aligned} & 331 \mathrm{X} \\ & 341 \mathrm{X} \\ & 351 \mathrm{X} \end{aligned}$		$\begin{aligned} & 635 \\ & 583 \\ & 565 \end{aligned}$		nm	Measurement at Peak (Figure 1)
$\Delta \lambda_{1 / 2}$	Spectral Line Halfwidth	$\begin{aligned} & 331 X \\ & 341 X \\ & 351 x \end{aligned}$		$\begin{aligned} & 40 \\ & 36 \\ & 28 \end{aligned}$		nm	
λ_{d}	Dominant Wavelength	$\begin{aligned} & \hline 331 X \\ & 341 X \\ & 351 X \end{aligned}$		$\begin{aligned} & \hline 626 \\ & 585 \\ & 569 \\ & \hline \end{aligned}$		nm	See Note 2 (Figure 1)
τ_{s}	Speed of Response	$\begin{aligned} & 331 X \\ & 341 X \\ & 351 X \end{aligned}$		$\begin{aligned} & 90 \\ & 90 \\ & 500 \end{aligned}$		ns	
C	Capacitance	$\begin{aligned} & 331 X \\ & 341 X \\ & 351 X \end{aligned}$		$\begin{aligned} & 11 \\ & 15 \\ & 18 \end{aligned}$		pF	$V_{F}=0 ; f=1 \mathrm{MHz}$
R $\theta_{\text {J-PIN }}$	Thermal Resistance	$\begin{aligned} & \hline 331 \mathrm{X} \\ & 341 \mathrm{X} \\ & 351 \mathrm{X} \end{aligned}$		260		${ }^{\circ} \mathrm{C} / \mathrm{W}$	Junction to Cathode Lead
$\overline{\mathrm{V}}$	Forward Voltage	$\begin{aligned} & 331 \mathrm{X} \\ & 341 \mathrm{X} \\ & 351 \mathrm{X} \end{aligned}$		$\begin{aligned} & \hline 1.9 \\ & 2.0 \\ & 2.1 \end{aligned}$	$\begin{aligned} & 2.4 \\ & 2.4 \\ & 2.7 \end{aligned}$	V	$\begin{aligned} & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA}(\text { Figure 2) } \\ & \left.\mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \text { (Figure } 7\right) \\ & \mathrm{I}_{\mathrm{F}}=10 \mathrm{~mA} \text { (Figure 12) } \end{aligned}$
V_{R}	Reverse Breakdown Volt.	All	5.0			V	$\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}$
$\eta \mathrm{V}$	Luminous Efficacy	$\begin{aligned} & 331 X \\ & 341 X \\ & 351 X \end{aligned}$		$\begin{aligned} & 145 \\ & 500 \\ & 595 \end{aligned}$		$\frac{\text { lumens }}{\text { Watt }}$	See Note 3

Notes:

1. $\theta_{1 / 2}$ is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
2. The dominant wavelength, λ_{d}, is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.
3. Radiant intensity, I_{e}, in watts/steradian, may be found from the equation $I_{e}=I_{v} / \eta_{v}$, where I_{v} is the luminous intensity in candelas and η_{v} is the luminous efficacy in lumens/watt.

Absolute Maximum Ratings at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

Parameter	331 X Series	341 X Series	351 X Series	Units
Peak Forward Current	90	60	90	mA
Average Forward Current ${ }^{[1]}$	25	20	25	mA
DC Current $^{[2]}$	30	20	30	mA
Power Dissipation ${ }^{[3]}$	135	85	5	mW
Reverse Voltage $\left(\mathrm{I}_{\mathrm{R}}=100 \mu \mathrm{~A}\right)$	5	5	500	V
Transient Forward Current ${ }^{[4]}$ $(10$ μ sec Pulse $)$	500	500	mA	
LED Junction Temperature	110	110	-20 to +100	${ }^{\circ}{ }^{\circ} \mathrm{C}$
Operating Temperature Range	-40 to +100	-40 to +100	-40 to +100	${ }^{\circ} \mathrm{C}$
Storage Temperature Range	-40 to +100	-40 to +100		

Notes:

1. See Figure 5 (Red), 10 (Yellow), or 15 (Green) to establish pulsed operating conditions.
2. For Red and Green series derate linearly from $50^{\circ} \mathrm{C}$ at $0.5 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$. For Yellow series derate linearly from $50^{\circ} \mathrm{C}$ at $0.2 \mathrm{~mA} /{ }^{\circ} \mathrm{C}$.
3. For Red and Green series derate power linearly from $25^{\circ} \mathrm{C}$ at $1.8 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$. For Yellow series derate power linearly from $50^{\circ} \mathrm{C}$ at $1.6 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$.
4. The transient peak current is the maximum non-recurring peak current that can be applied to the device without damaging the LED die and wirebond. It is not recommended that the device be operated at peak currents beyond the peak forward current listed in the Absolute Maximum Ratings.

Figure 1. Relative intensity vs. wavelength.

Table 2. Intensity Bin Limit

Color	Bin	Intensity Range (mcd)	
		Min.	Max.
Red	H	15.5	24.8
	1	24.8	39.6
	J	39.6	63.4
	K	63.4	101.5
	L	101.5	162.4
	M	162.4	234.6
	N	234.6	340.0
	0	340.0	540.0
	P	540.0	850.0
	Q	850.0	1200.0
	R	1200.0	1700.0
	S	1700.0	2400.0
	T	2400.0	3400.0
	U	3400.0	4900.0
	V	4900.0	7100.0
	W	7100.0	10200.0
	X	10200.0	14800.0
	Y	14800.0	21400.0
	Z	21400.0	30900.0

Table 2. (Cont'd)

Color	Bin	Intensity Range (mcd)	
		Min.	Max.
Yellow	G	16.6	26.5
	H	26.5	42.3
	1	42.3	67.7
	J	67.7	108.2
	K	108.2	173.2
	L	173.2	250.0
	M	250.0	360.0
	N	360.0	510.0
	0	510.0	800.0
	P	800.0	1250.0
	Q	1250.0	1800.0
	R	1800.0	2900.0
	S	2900.0	4700.0
	T	4700.0	7200.0
	U	7200.0	11700.0
	V	11700.0	18000.0
	W	18000.0	27000.0

Table 2. (Cont'd)

Color	Bin	Intensity Range (mcd)	
		Min.	Max.
Green	E	7.6	12.0
	F	12.0	19.1
	G	19.1	30.7
	H	30.7	49.1
	1	49.1	78.5
	J	78.5	125.7
	K	125.7	201.1
	L	201.1	289.0
	M	289.0	417.0
	N	417.0	680.0
	0	680.0	1100.0
	P	1100.0	1800.0
	Q	1800.0	2700.0
	R	2700.0	4300.0
	S	4300.0	6800.0
	T	6800.0	10800.0
	U	10800.0	16000.0
	V	16000.0	25000.0
	W	25000.0	40000.0

Maximum tolerance for each bin limit is $\pm 18 \%$.

Color Categories

Color	Cat \#	Lambda (nm)	
		Min.	Max.
Green	6	561.5	564.5
	5	564.5	567.5
	4	567.5	570.5
	3	570.5	573.5
	2	573.5	576.5
Yellow	1	582.0	584.5
	3	584.5	587.0
	2	587.0	589.5
	4	589.5	592.0
	5	592.0	593.0

Mechanical Option Matrix

Mechanical Option Code	Definition
00	Bulk Packaging, minimum increment $500 \mathrm{pcs} / \mathrm{bag}$
01	Tape \& Reel, crimped leads, minimum increment $1300 \mathrm{pcs} / \mathrm{bag}$
02	Tape \& Reel, straight leads, minimum increment $1300 \mathrm{pcs} / \mathrm{bag}$
B1	Right Angle Housing, uneven leads, minimum increment $500 \mathrm{pcs} / \mathrm{bag}$
B2	Right Angle Housing, even leads, minimum increment $500 \mathrm{pcs} / \mathrm{bag}$

Note:
All Categories are established for classification of products. Products may not be available in all categories. Please contact your local Avago representative for further clarification/information.

